Concerning the Formation and Acid-Catalyzed Aquation Reactions of Carbonato-, O-Bonded Sulfitoand Nitritopentaamminecobalt(III) Ions

RUDI VAN ELDIK

Institute for Physical Chemistry, University of Frankfurt, 6000 Frankfurt am Main, F.R.G.

and GORDON M. HARRIS

Department of Chemistry, State University of New York at Buffalo, Buffalo, N.Y. 14214, U.S.A.

Received May 20, 1982

We have read with interest a recent report of a study by Sargeson and co-workers [1] which has enabled them, through use of oxygen-17 NMR, to clarify some details of their preceding findings [2] concerning intramolecular oxygen exchange during linkage isomerization and acid-catalyzed aquation reactions of nitrito-pentaamminecobalt(III). The earlier study employed oxygen-18 labelling, the analytical procedure for which prevented some of the clear-cut conclusions recently reported. It is now [1] obvious that not only does oxygen scrambling occur at a rather slow rate during isomerization (very close to that of the isomerization rate) but the very rapid scrambling previously ascribed [2] to the synthesis process can now be identified with acid-catalyzed aquation.

This latter conclusion is rather surprising, and has not been interpreted mechanistically by Sargeson et al. [1], though they provide a plausible interpretation of the scrambling during the spontaneous and base catalyzed isomerization reactions. Typically in molecular eliminations, as we have shown [3-7] in a number of kinetic studies of formation and acid-catalyzed aquation reactions of transition metal carbonato and O-bonded sulfito complexes, the uptake and release reactions are very rapid (stopped-flow time scale), and do not involve metal-oxygen bond cleavage of the parent aquo complex ion. Similar studies [8, 9] of the formation reaction of the Co(NH₃)₅ONO²⁺ species leave some doubt as to the exact nature of the nitrosation reagent as has previously been pointed out several times [10-13]. In contrast, the formation reactions of $Co(NH_3)_5OCO_2^{\dagger}$ or $Co(NH_3)_5OSO_2^{\dagger}$ have clearly been shown to proceed via simple CO_2 and SO_2 addition to Co(NH₃)₅OH²⁺, retaining the Co-O bond intact [3, 4, 14-16]. However, the retention of the Co-O bond in the formation of Co(NH₃)₅ONO²⁺ is also

0020-1693/82/0000-0000/\$02.75

further confirmed [17] by recent NMR study [1].

The acid-catalyzed aquation reaction of Co(NH₃)₅-ONO²⁺ is very rapid [2, 8] so no simple Co–O bond fission is to be expected [18–20]. The rapid oxygen exchange during the aquation of the nitrito species thus requires an entirely different type of mechanism from that proposed for the carbonato and O-sulfito analogues. The products of the reaction [8] are Co(NH₃)₅OH₂³⁺ and an as yet unidentified acidic form of NO⁺. Whatever this mechanism, it cannot involve the same π -bonded intermediate proposed by Sargeson, *et al.* [1] to account for the scrambling during isomerization, since the latter is a slow process. However, a protonated version of this such as:

might be quite unstable and could lead to the observed 50% retention of label in the aquo product. Another pseudo-chelate of the form:

could also account for the 50% label retention during aquation. Clearly, a detailed analysis of this acidcatalyzed aquation process and its reaction products is needed in order to resolve the seemingly anomalous behavior of the nitritopentaamminecobalt(III) complex.

Acknowledgement

The authors gratefully acknowledge financial support for their studies from the Scientific Affairs Division of NATO under grant No. RG 114.81.

References

- 1 W. G. Jackson, G. A. Lawrance, P. A. Lay and A. M. Sargeson, J Chem. Soc. Chem. Comm., 70 (1982).
- 2 W. G. Jackson, G. A. Lawrance, P. A. Lay and A. M. Sargeson, *Inorg. Chem.*, 19, 904 (1980).
- 3 R. van Eldik, D. A. Palmer, H. Kelm and G. M. Harris, *Inorg. Chem.*, 19, 3679 (1980); and literature cited therein.
- 4 R. van Eldik and G. M. Harris, Inorg. Chem., 19, 880 (1980).

© Elsevier Sequoia/Printed in Switzerland

- 5 R. van Eldik, Inorg. Chim. Acta, 42, 49 (1980).
- 6 A. A. El-Awady and G. M. Harris, Inorg. Chem., 20, 1660 (1981).
- 7 A. C. Dash, A. A. El-Awady and G. M. Harris, Inorg. Chem., 20, 3160 (1981).
- 8 R. G. Pearson, P. M. Henry, J. G. Bergmann and F. Basolo, J. Am. Chem. Soc., 76, 5920 (1954).
- 9 H. Ghazi-Bajat, R. van Eldik and H. Kelm, Inorg. Chim. Acta, 60, 81 (1982).
 10 C. Stadman, Adv. Juna, Cham. Badiochem. 22, 142
- 10 G. Stedman, Adv. Inorg. Chem. Radiochem., 22, 143 (1979).
- 11 M. Anbar and H. Taube, J. Am. Chem. Soc., 76, 6243 (1954).
- 12 D. J. Benton and P. Moore, J. Chem. Soc. (A), 3179 (1970).

- 13 M. N. Hughes, K. Shrimanker and P. E. Wimbledon, J. Chem. Soc. Dalton, 1634 (1978).
- 14 E. Chaffee, T. P. Dasgupta and G. M. Harris, J. Am. Chem. Soc., 95, 4169 (1973).
- 15 J. B. Hunt, A. C. Rutenberg and H. Taube, J. Am. Chem. Soc., 74, 268 (1952).
- 16 R. van Eldik, J. von Jouanne and H. Kelm, Inorg. Chem., in press.
- 17 R. K. Murmann and H. Taube, J. Am. Chem. Soc., 78, 4886 (1956).
- 18 H. R. Hunt and H. Taube, J. Am. Chem. Soc., 80, 2642 (1958).
- 19 G. Guastalla and T. W. Swaddle, Can. J. Chem., 51, 821 (1973).
- 20 P. R. Joubert and R. van Eldik, Int. J. Chym. Kinet., 8, 411 (1976); and references cited therein.